SGPP TS 35.202 v9.0.0 (2009-12)

Technical Specification

3rd Generation Partnership Project;

Technical Specification Group Services and System Aspects;
3G Security;

Specification of the 3GPP Confidentiality

and Integrity Algorithms;

Document 2: KASUMI Specification

(Release 9)

™

The present document has been developed within the 3" Generation Partnership Project (3GPP ™) and may be further elaborated for the purposes of 3GPP.

The present document has not been subject to any approval process by the 3GPP Organizational Partners and shall not be implemented.
This Specification is provided for future development work within 3GPP only. The Organizational Partners accept no liability for any use of this Specification.
Specifications and reports for implementation of the 3GPP ™ system should be obtained via the 3GPP Organizational Partners' Publications Offices.

Release 9 2 3GPP TS 35.202 V9.0.0 (2009-12)

Keywords
UMTS, algorithm, KASUMI

3GPP

Postal address

3GPP support office address

650 Route des Lucioles - Sophia Antipolis
Valbonne - FRANCE
Tel.: +33 492 94 42 00 Fax: +33 4 93 65 47 16

Internet
http://www.3gpp.org

Copyright Notification

No part may be reproduced except as authorized by written permission.
The copyright and the foregoing restriction extend to reproduction in all media.

©2009, 3GPP Organizational Partners (ARIB, ATIS, CCSA, ETSI, TTA, TTC).
Al rights reserved.

UMTS™ is a Trade Mark of ETSI registered for the benefit of its members

3GPP™ is a Trade Mark of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners

LTE™ is a Trade Mark of ETSI currently being registered for the benefit of its Members and of the 3GPP Organizational Partners
GSM® and the GSM logo are registered and owned by the GSM Association

3GPP

Release 9 3 3GPP TS 35.202 V9.0.0 (2009-12)

Contents

[T =11V (o [T 4
L0 lo (063 o] o [T TPPTTT 4
0 STol0] oL T RO UU PP OUPPTTTI 6
NORMATIVE SECTION ..ceittiiiit ettt ettt e e ettt ettt e e et et e s et teee et ee s e seeeeeeee st e rreeeeeeesrr e rreeees 7
1 Outline of the NOTMALIVE PANTcoviiiieiii et 8
1.1 RETEIENCES ... 8
2 a1 [Nl (o] Y [0 {01 4074 o] o TSR 8
2.1 gL 0o (U o] o T RTTRRTRTRTRTRT 8
2.2 NOTALION.....c.cceeeeeeeeeeeeeee e 9
2.2.1 RAIX e 9
2.2.2 1 7AYol g (<] 8 oo UV RP U UR PP PRI 9
2.2.3 CONVENTIONS ..o 9
2.2.4 SUBTUNCLIONS. ... 9
2.25 LSt OF SYMDOIS <.ttt ettt et b e et e e et e e s te e e enaeeaneeas 10
2.3 List of FUNCLIONS aNA VATADIES ... 10
3 (NS U1V o o T=T = (oo OO PSTR 10
3.1 L1 oo (ULt £ To] o T RTTRTTRTTTRTRRTN 10
3.2 3Tl Y/ o1 (o] [PPSR UTR TR 11
4 Components OF KASUMIL ...ttt ettt et e e st e e st e e st e e snaeeenteeeanneeens 11
4.1 FUNCLION i 11
4.2 FUNCLION FL . 11
4.3 FUNCLION FO... 12
4.4 FUNCLION Fl..cc 12
4.5 R 010) YRR TRRTRTRRRRRRRRRR 13
451 Y PR 13
45.2 1 PR 14
4.6 KBY SCNEAUIR ...ttt ettt ettt e h e et e ket e e b et e e b bt e em b e e e be e e nbaeesbaaeenteas 15
INFORMATIVE SECTION ..ottt ettt e ettt e et e e ettt ettt e e e e ee e et e rseee et ees st e s reeeeeeeennnanns 17
Annex 1 (informative): Figures of the KASUMI Algorithm ... 18
Annex 2 (informative): Simulation Program LiStiNgccceeiiiiiiieeiee e 20
Annex 3 (informative): Change NiISTONY ...eeiee e 24

3GPP

Release 9 4 3GPP TS 35.202 V9.0.0 (2009-12)

Foreword

This Technical Specification has been produced by the 3 Generation Partnership Project (3GPP).

The 3GPP Confidentiality and Integrity Algorithms f8 & f9 have been developed through the collaborative efforts of the
European Telecommunications Standards Institute (ETSI), the Association of Radio Industries and Businesses (ARIB),
the Telecommunications Technology Association (TTA), the T1 Committee.

The 8 & 9 Algorithms Specifications may be used only for the development and operation of 3G Mobile
Communications and services. Every Beneficiary must sign a Restricted Usage Undertaking with the Custodian and
demonstrate that he fulfills the approval criteria specified in the Restricted Usage Undertaking.

Furthermore, Mitsubishi Electric Corporation holds essential patents on the Algorithms. The Beneficiary must get a
separate IPR License Agreement from Mitsubishi Electronic Corporation Japan.

For details of licensing procedures, contact ETSI, ARIB, TTA or T1.

The contents of the present document are subject to continuing work within the TSG and may change following formal
TSG approval. Should the TSG modify the contents of the present document, it will be re-released by the TSG with an
identifying change of release date and an increase in version number as follows:

Version X.y.z
where:
X the first digit:
1 presented to TSG for information;
2 presented to TSG for approval;
3 or greater indicates TSG approved document under change control.

y the second digit is incremented for all changes of substance, i.e. technical enhancements, corrections, updates,
etc.

z the third digit is incremented when editorial only changes have been incorporated in the document.

Introduction

This specification has been prepared by the 3GPP Task Force, and gives a detailed specification of the 3GPP Algorithm
KASUMI. KASUMI is a block cipher that forms the heart of the 3GPP confidentiality algorithm f8, and the 3GPP
integrity algorithm f9.

This document is the second of four, which between them form the entire specification of the 3GPP Confidentiality and
Integrity Algorithms:

- 3GPP TS 35.201: "3rd Generation Partnership Project; Technical Specification Group Services and System
Aspects; 3G Security; Specification of the 3GPP Confidentiality and Integrity Algorithms; Document 1: f8 and
f9 Specification".

- 3GPP TS 35.202: "3rd Generation Partnership Project; Technical Specification Group Services and
System Aspects; 3G Security; Specification of the 3GPP Confidentiality and Integrity Algorithms;
Document 2: KASUMI Specification™.

- 3GPP TS 35.203: "3rd Generation Partnership Project; Technical Specification Group Services and System
Aspects; 3G Security; Specification of the 3GPP Confidentiality and Integrity Algorithms; Document 3:
Implementors’ Test Data".

3GPP

Release 9 5 3GPP TS 35.202 V9.0.0 (2009-12)

- 3GPP TS 35.204: "3rd Generation Partnership Project; Technical Specification Group Services and System
Aspects; 3G Security; Specification of the 3GPP Confidentiality and Integrity Algorithms; Document 4: Design
Conformance Test Data".

The normative part of the specification of KASUMI is in the main body of this document. The annexes to this
document are purely informative. Annex 1 contains illustrations of functional elements of the algorithm, while Annex 2
contains an implementation program listing of the cryptographic algorithm specified in the main body of this document,
written in the programming language C.

Similarly the normative part of the specification of the f8 (confidentiality) and the f9 (integrity) algorithms is in the
main body of Document 1. The annexes of those documents, and Documents 3 and 4 above, are purely informative.

3GPP

Release 9 6 3GPP TS 35.202 V9.0.0 (2009-12)

0 Scope

This specification gives a detailed specification of the 3GPP Algorithm KASUMI. KASUMI is a block cipher that
forms the heart of the 3GPP confidentiality algorithm 8, and the 3GPP integrity algorithm 9.

3GPP

Release 9 7 3GPP TS 35.202 V9.0.0 (2009-12)

NORMATIVE SECTION

This part of the document contains the normative specification of the KASUMI algorithm.

3GPP

Release 9 8 3GPP TS 35.202 V9.0.0 (2009-12)

1 Outline of the normative part

Section 2 introduces the algorithm and describes the notation used in the subsequent sections.
Section 3 defines the algorithm structure and its operation.

Section 4 defines the basic components of the algorithm.

1.1 References

The following documents contain provisions which, through reference in this text, constitute provisions of the present
document.

o References are either specific (identified by date of publication, edition number, version number, etc.) or
non-specific.

o For a specific reference, subsequent revisions do not apply.

o For a non-specific reference, the latest version applies. In the case of a reference to a 3GPP document (including
a GSM document), a non-specific reference implicitly refers to the latest version of that document in the same
Release as the present document.

[1] 3GPP TS 33.102 version 3.2.0: "3rd Generation Partnership Project; Technical Specification
Group Services and System Aspects; 3G Security; Security Architecture”.

[2] 3GPP TS 33.105 version 3.1.0: "3rd Generation Partnership Project; Technical Specification
Group Services and System Aspects; 3G Security; Cryptographic Algorithm Requirements™.

[3] 3GPP TS 35.201: "3rd Generation Partnership Project; Technical Specification Group Services
and System Aspects; 3G Security; Specification of the 3GPP Confidentiality and Integrity
Algorithms; Document 1: f8 and f9 Specification”.

[4] 3GPP TS 35.202: "3rd Generation Partnership Project; Technical Specification Group Services
and System Aspects; 3G Security; Specification of the 3GPP Confidentiality and Integrity
Algorithms; Document 2: KASUMI Specification™.

[5] 3GPP TS 35.203: "3rd Generation Partnership Project; Technical Specification Group Services
and System Aspects; 3G Security; Specification of the 3GPP Confidentiality and Integrity
Algorithms; Document 3: Implementors’ Test Data".

[6] 3GPP TS 35.204: "3rd Generation Partnership Project; Technical Specification Group Services
and System Aspects; 3G Security; Specification of the 3GPP Confidentiality and Integrity
Algorithms; Document 4: Design Conformance Test Data™.

[7] ISO/IEC 9797-1:1999: "Information technology — Security techniques — Message Authentication
Codes (MACs)".

2 Introductory information

2.1 Introduction

Within the security architecture of the 3GPP system there are two standardised algorithms: A confidentiality algorithm
f8, and an integrity algorithm 9. These algorithms are fully specified in a companion document[3]. Each of these
algorithms is based on the KASUMI algorithm that is specified here.

KASUMI is a block cipher that produces a 64-bit output from a 64-bit input under the control of a 128-bit key.

3GPP

Release 9 9 3GPP TS 35.202 V9.0.0 (2009-12)

2.2 Notation

2.2.1 Radix

We use the prefix 0x to indicate hexadecimal numbers.

2.2.2 Bit/Byte ordering

All data variables in this specification are presented with the most significant bit (or byte) on the left hand side and the
least significant bit (or byte) on the right hand side. Where a variable is broken down into a number of sub-strings, the
left most (most significant) sub-string consists of the most significant part of the original string and so on through to the
least significant.

For example if a 64-bit value X is subdivided into four 16-bit substrings P, Q, R, S we have:
X = 0x0123456789ABCDEF
we have:
P =0x0123, Q =0x4567, R = 0x89AB, S = OxCDEF.
In binary this would be:
X =0000000100100011010001010110011110001001101010111100110111101111

with P =0000000100100011
Q =0100010101100111
R =1000100110101011
S$=1100110111101111
2.2.3 Conventions
We use the assignment operator ‘=", as used in several programming languages. When we write
<variable> = <expression>
we mean that <variable> assumes the value that <expression> had before the assignment took place. For instance,
X=X+y+3
means

(new value of x) becomes (old value of x) + (old value of y) + 3.

2.2.4 Subfunctions

KASUMI decomposes into a number of subfunctions (FL, FO, FI) which are used in conjunction with associated sub-
keys (KL, KO, KIl) in a Feistel structure comprising a number of rounds (and rounds within rounds for some
subfunctions). Specific instances of the function and/or keys are represented by XX;;where i is the outer round number
of KASUMI and j is the inner round number.

For example the function FO comprises three rounds of the function FI, so we designate the third round of FI in the
fifth round of KASUMI as Fls 5.

3GPP

Release 9 10 3GPP TS 35.202 V9.0.0 (2009-12)

2.2.5 List of Symbols
= The assignment operator.
S The bitwise exclusive-OR operation.

I The concatenation of the two operands.

<<<n The left circular rotation of the operand by n bits.
ROL() The left circular rotation of the operand by one bit.
N The bitwise AND operation.

) The bitwise OR operation.

2.3 List of Functions and Variables

fi() The round function for the i'" round of KASUMI

FI() A subfunction within KASUMI that translates a 16-bit input to a 16-bit output using a 16-bit
subkey.

FL() A subfunction within KASUMI that translates a 32-bit input to a 32-bit output using a 32-bit
subkey.

FO() A subfunction within KASUMI that translates a 32-bit input to a 32-bit output using two 48-bit
subkeys.

K A 128-bit key.

KL;,KO;KI; subkeys used within the i'" round of KASUMI.

S7[] An S-Box translating a 7-bit input to a 7-bit output.

S9[] An S-Box translating a 9-bit input to a 9-bit output.

3 KASUMI operation

3.1 Introduction

(See figure 1 in Annex 1)

KASUMI is a Feistel cipher with eight rounds. It operates on a 64-bit data block and uses a 128-bit key. In this section
we define the basic eight-round operation. In section 4 we define in detail the make-up of the round function f;().

3GPP

Release 9 11 3GPP TS 35.202 V9.0.0 (2009-12)

3.2 Encryption
KASUMI operates on a 64-bit input 1 using a 128-bit key K to produce a 64-bit output OUTPUT, as follows:
The input I is divided into two 32-bit strings L, and Ry, where
I=Lo || Ro
Then for each integer i with 1 <i <8 we define:
Ri=Li1y, Li=Ria @ fi(Li1, RK;)

This constitutes the i round function of KASUMI, where f; denotes the round function with L;; and round key
RK; as inputs (see section 4 below).

The result OUTPUT is equal to the 64-bit string (Lg || Rg) offered at the end of the eighth round. See figure 1 of
Annex 1.

In the specifications for the f8 and 9 functions we represent this transformation by the term:

OUTPUT = KASUMI[I 1k

4 Components of KASUMI

4.1 Function f;

(See figure 1 in Annex 1)

The function fj() takes a 32-bit input I and returns a 32-bit output O under the control of a round key RK;, where the
round key comprises the subkey triplet of (KL;, KO;, KI;). The function itself is constructed from two subfunctions; FL
and FO with associated subkeys KL; (used with FL) and subkeys KO; and KI; (used with FO).

The fi() function has two different forms depending on whether it is an even round or an odd round.
For rounds 1,3,5 and 7 we define:

fi(1, RK;) = FO(FL(I, KL;), KO, KI;)
and for rounds 2,4,6 and 8 we define:

fi(1, RK;) = FL(FO(I, KO;, KI;), KL;)

i.e. For odd rounds the round data is passed through FL(') and then FO(), whilst for even rounds it is passed through
FO() and then FL().

4.2 Function FL

(See figure 4 in Annex 1)

The input to the function FL comprises a 32-bit data input | and a 32-bit subkey KL;. The subkey is split into two 16-
bit subkeys, KL;; and KL;, where

KLi = KI—i,l ” KLivg.
The input data I is split into two 16-bit halves, L and R where I =L || R.

We define:

R'=R®ROL(L N KLi;)
L'=L@®ROL(R'U KL;,)

The 32-bit output value is (L' || R").

3GPP

Release 9 12 3GPP TS 35.202 V9.0.0 (2009-12)

4.3 Function FO

(See figure 2 in Annex 1)

The input to the function FO comprises a 32-bit data input I and two sets of subkeys, a 48-bit subkey KO; and 48-bit
subkey KI;.

The 32-bit data input is split into two halves, Lo and Ry where | = Lg || R,.
The 48-bit subkeys are subdivided into three 16-bit subkeys where

KO; = KO, || KO, || KOz and Kl = Kl || Kliz || Klis.
Then for each integer j with 1 <j <3 we define:

RJ = FI(LJ_]_ (‘B KOi'j) Kli,j)(-B Rj'l
Li=Rja

Finally we return the 32-bit value (L; || Rs).

4.4 Function FI

(See figure 3 in Annex 1. The thick and thin lines in this diagram are used to emphasise the difference between the
9-bit and 7-bit data paths respectively).

The function FI takes a 16-bit data input I and 16-bit subkey Kl;;. The input I is split into two unequal components, a
9-bit left half L, and a 7-bit right half Ry where 1 =Lg || Ro.

Similarly the key Kl is split into a 7-bit component Kl;;; and a 9-bit component Kl; j», where Kl;; = Kljj1 || Klij2.

The function uses two S-boxes, S7 which maps a 7-bit input to a 7-bit output, and S9 which maps a 9-bit input to a 9-bit
output. These are fully defined in section 4.5. It also uses two additional functions which we designate ZE() and TR().
We define these as:

ZE(x) takes the 7-bit value x and converts it to a 9-bit value by adding two zero bits to the most-significant end.
TR(x) takes the 9-bit value x and converts it to a 7-bit value by discarding the two most-significant bits.
We define the following series of operations:

L. =R Ry = S9[Lo] ® ZE(Ry)

L,=R; ®Klij; R,=S7[L]® TR(Ry) @ Kl

Ls=R, R; = S9[L,] ® ZE(Ry,)

L, =S7[Ls] ® TR(Rs) Rs=Rs

The function returns the 16-bit value (L4 || Ry).

3GPP

Release 9 13 3GPP TS 35.202 V9.0.0 (2009-12)

4.5 S-boxes

The two S-boxes have been designed so that they may be easily implemented in combinational logic as well as by a
look-up table. Both forms are given for each table.

The input x comprises either seven or nine bits with a corresponding number of bits in the output y. We therefore have:
X =X8|| X7 || X6 || X5 || x4 || x3 || x2 || x1 || xO
and

y=y8lly7lly6lly5(ly4lly3lly2[lyl|lyo
where the x8, y8 and x7,y7 bits only apply to S9, and the x0 and y0 bits are the least significant bits.

In the logic equations:

X0x1x2 implies x0 N x1 m x2 where m is the AND operator.
@ is the exclusive-OR operator.

Following the presentation of the logic equations and the equivalent look-up table an example is given of the use of
each.

45.1 S7

Gate Logic :

Y0 =x1Xx3DX4DX0XIX4DX5DX2X5DXIX4X5DX6DX0OX6DXIXE6DX3IX6DX2XAX6DX1IX5X6
Dx4XxX5x6
Y1 =X0X1DX0X4DX2X4DX5DXIX2X5DX0X3X5DX6DX0X2X6DX3IX6DX4X5X6D1
y2 =X0DX0Xx3DX2X3DX1IX2X4DX0X3X4DXIX5DX0X2X5DX0X6BX0XIX6DX2X6DX4X6D1
Y3 =X1BX0XIX2DXIX4DX3X4DXOX5DX0XIXEDX2X3X5DXIXAXEDX2X6DX1X3X6
y4 =x0x2DXx3DXIX3DXIX4DX0XIX4DX2X3X4DX0OX5DXIXIX5DX0XAX5DXIX6DX3X6
DX0X3X6DX5x6D1
Y5 =x2@Xx0x2DX0X3DXIX2X3DX0X2X4DX0XE5DX2X5DXAX5DXIX6DXIX2X6DX0X3X6
Dx3XAX6DX2X5X6D1
Y6 =x1X2DX0X1IX3DX0X4DXIX5DXIXE5DX6DX0XIX6DX2XIX6DX LX4X6DX0X5X6

Decimal Table :

54, 50, 62, 56, 22, 34, 94, 96, 38, 6, 63, 93, 2, 18,123, 33,
55,113, 39,114, 21, 67, 65, 12, 47, 73, 46, 27, 25,111,124, 81,
53, 9,121, 79, 52, 60, 58, 48,101,127, 40,120,104, 70, 71, 43,
20,122, 72, 61, 23,109, 13,100, 77, 1, 16, 7, 82, 10,105, 98,
117,116, 76, 11, 89,106, 0,125,118, 99, 86, 69, 30, 57,126, 87,
112, 51, 17, 5, 95, 14, 90, 84, 91, 8, 35,103, 32, 97, 28, 66,
102, 31, 26, 45, 75, 4, 85, 92, 37, 74, 80, 49, 68, 29,115, 44,
64,107,108, 24,110, 83, 36, 78, 42, 19, 15, 41, 88,119, 59, 3

Example:
If we have an input value = 38, then using the decimal table S7[38] = 58.
For the combinational logic we have:

38 =0100110, = x6 =0, x5=1, x4=0, x3=0, x2=1, x1=1, x0=0

3GPP

Release 9 14 3GPP TS 35.202 V9.0.0 (2009-12)

which gives us:

y0 = 0000121000000 00D0D0 =0
yl = 00000010 1000000e000P1 =1
y2 = 090000200 10000000000P1 =0
y3 = 1000000e0e00e0e00 =1

y4 = 00000002000000e0e000000P1 = 1
y5 = 10000002000010000000000001 = 1
y6 = 10000010000e0e0dD0 =0

Thus y = 0111010, = 58

4.5.2 S9

Gate Logic :

YO = XOX2OX3DX2X5DXEX6DX0X7DXIXTDX2XT DX4XBDX5Xx8DX7X8D1

yl = X1®X0X1DX2x3DX0X4DXIX4DXOX5DXIX5DX6DXIXTDX2X7DX5X8D1

y2 = X1OXOX3DX3IXx4DXOX5DX2XE6DXIX6DXE5X6DXAXTDX5XTDX6XT7DX8DX0X8D1

y3 = X0DXIX2DX0X3DX2X4DX5DXOX6DXIX6DXAXTDXOXB8DX1XB8DX7X8

y4 = XOX1DX1Ix3Dx4DXOX5DXIX6DX0OX7DX6X7DXIXBDX2X8DX3X8

Y5 = X2®X1xX4DX4X5DXOX6DXIXEDXIXTDXAXTDX6XTDX5X8DX6X8DX7X8D1

y6 = XO0DX2X3DXIX5DX2X5OXAX5DX3X6DXAX6DXEX6DX7DX1XB8DOX3XBDX5X8DX7X8
y7 = XOX1OX0OX2Bx1X2DX3DXOX3DX2X3DXAX5DX2X6DXIX6DX2XT7DX5X7DX8D1

y8 = XOX1DX2DX1IX2DX3X4DXIX5DX2X5DXIX6DXAX6DXT7DX2XBDX3IX8

Decimal Table :

167,239,161,379,391,334, 9,338, 38,226, 48,358,452,385, 90,397,
183,253,147,331,415,340, 51,362,306,500,262, 82,216,159,356,177,
175,241,489, 37,206, 17, 0,333, 44,254,378, 58,143,220, 81,400,
95, 3,315,245, 54,235,218,405,472,264,172,494,371,290,399, 76,
165,197,395,121,257,480,423,212,240, 28,462,176,406,507,288,223,
501,407,249,265, 89,186,221,428,164, 74,440,196,458,421,350,163,
232,158,134,354, 13,250,491,142,191, 69,193,425,152,227,366,135,
344,300,276,242,437,320,113,278, 11,243, 87,317, 36, 93,496, 27,
487,446,482, 41, 68,156,457,131,326,403,339, 20, 39,115,442,124,
475,384,508, 53,112,170,479,151,126,169, 73,268,279,321,168,364,
363,292, 46,499,393,327,324, 24,456,267,157,460,488,426,309,229,
439,506,208,271,349,401,434,236, 16,209,359, 52, 56,120,199,277,
465,416,252,287,246, 6, 83,305,420,345,153,502, 65, 61,244,282,
173,222,418, 67,386,368,261,101,476,291,195,430, 49, 79,166,330,
280,383,373,128,382,408,155,495,367,388,274,107,459,417, 62,454,
132,225,203,316,234, 14,301, 91,503,286,424,211,347,307,140,374,
35,103,125,427, 19,214,453,146,498,314,444,230,256,329,198,285,
50,116, 78,410, 10,205,510,171,231, 45,139,467, 29, 86,505, 32,
72, 26,342,150,313,490,431,238,411,325,149,473, 40,119,174,355,
185,233,389, 71,448,273,372, 55,110,178,322, 12,469,392,369,190,
1,109,375,137,181, 88, 75,308,260,484, 98,272,370,275,412,111,
336,318, 4,504,492,259,304, 77,337,435, 21,357,303,332,483, 18,
47, 85, 25,497,474,289,100,269,296,478,270,106, 31,104,433, 84,
414,486,394, 96, 99,154,511,148,413,361,409,255,162,215,302,201,
266,351,343,144,441,365,108,298,251, 34,182,509,138,210,335,133,
311,352,328,141,396,346,123,319,450,281,429,228,443,481, 92,404,
485,422,248,297, 23,213,130,466, 22,217,283, 70,294,360,419,127,
312,377, 7,468,194, 2,117,295,463,258,224,447,247,187, 80,398,
284,353,105,390,299,471,470,184, 57,200,348, 63,204,188, 33,451,
97, 30,310,219, 94,160,129,493, 64,179,263,102,189,207,114,402,
438,477,387,122,192, 42,381, 5,145,118,180,449,293,323,136,380,
43, 66, 60,455,341,445,202,432, 8,237, 15,376,436,464, 59,461

3GPP

Release 9 15 3GPP TS 35.202 V9.0.0 (2009-12)

Example:
If we have an input value = 138, then using the decimal table S9[138] = 339.
For the combinational logic we have:
138 = 010001010, = x8=0,x7 =1, x6 =0, x5=0, x4=0, x3=1, x2=0, x1=1, x0=0

which gives us:

y0 = 0019000001 0000e000P1 =1
yl = 1©0©00020000000010000P1 =1
y2 = 1800000200000002020D000d1 =0
y3 = 090002000 0D0D0D0 =0
y4 = 0©19000e000e0e0dD0 =1
y5 = 0000020100000 0D0P1 =0
y6 = 00000002 00D0P0D1D0D0D0D0 =1
y7 = 000001200000002020P0D0D1 =0
y8 = 00000200 0P0D1D0D0 =1

Thus y = 101010011, = 339

4.6 Key Schedule

KASUMI has a 128-bit key K. Each round of KASUMI uses 128 bits of key that are derived from K. Before the round
keys can be calculated two 16-bit arrays Kj and Kj' (j=1 to 8) are derived in the following manner:

The 128-bit key K is subdivided into eight 16-bit values K1...K8 where
K=K1|K2| K3]...|| K8.
A second array of subkeys, Kj'is derived from Kj by applying:
For each integer jwith 1 <j <8
Kj'= Kj® Cj
Where Cj is the constant value defined in table 2.

The round subkeys are then derived from Kj and Kj' in the manner defined in table 1.

Table 1: Round subkeys

1 2 3 4 5 6 7 8
KLi1 Kl<<<1l K2<<<1 K3<<<1 K4<<<1 K5<<<1 Kb6<<<1 K7<<<1 K8<<<1
KLi2 K3' K4' K5' K6' K7' K8' K1' K2'

KOi1 K2<<<5 K3<<<5 K4<<<5 K5<<<5 K6<<<5 K7<<<5 K8<<<5 Kl<<<5
KOi2 K6<<<8 K7<<<8 K8<<<8 K1l<<<8 K2<<<8 K3<<<8 K4<<<8 K5<<<8
KOi 3 K7<<<13 KB8<<<13 Kl<<<13 K2<<<13 K3<<<13 K4<<<13 Kb<<<13 Kb6<<<13

Kli1 K5' K6' K7' K8' K1' K2' K3' K4'
Kli 2 K4' K5' K6' K7' K8' K1' K2' K3'
Klizs K8' K1' K2' K3' K4' K5' K6' K7'

3GPP

Release 9

16

Table 2: Constants

Ci 0x0123
Cc2 0x4567
C3 0x89AB
C4 OxCDEF
C5 OXFEDC
C6 0xBA98
C7 0x7654
C8 0x3210

3GPP

3GPP TS 35.202 V9.0.0 (2009-12)

Release 9 17 3GPP TS 35.202 V9.0.0 (2009-12)

INFORMATIVE SECTION

This part of the document is purely informative and does not form part of the normative specification of KASUMI.

3GPP

Release 9

18

3GPP TS 35.202 V9.0.0 (2009-12)

Annex 1 (informative):

Figures of the KASUMI Algorithm

Lo 64 Ry

32 i 32
v KL, I KO,, K,

—» FLL—» FO1 >

KO,, Kl KL
; 2 Bl ; 2

—» FO2 > FL2 >4

(%

g Kb KOsk

—»> FL3|—» FO3 >

%

KO, KI KL
; 4 Ny ; 4

—» FO4 > FL4 >

(%

—» FL5 >

_I_I
o
a
b 4

e

N

n
o
>
y
-
L
o
) 4
N
U

-
L
o
A 4
-
o]
N
b 4
)
N

n
O
©
y
-
L
©
) 4
N
U

Fig. 1: KASUMI

16

32
16

PHe— KO;;

Flil

— Klj;

D
L
A

Fli2

VAR
\J
4

Fli3

D
L
A

Fig.2: FO Function

16

16

8 Heo
~

zero-extend

truncate

zero-extend

E

truncate

|

Fig.3: FI Function

A

16

KL;,

NS

e << ———

<KL

v

ﬂ bitwise AND operation

U bitwise OR operation

one bit left rotation

Fig.4: FL Function

3GPP

Release 9 19 3GPP TS 35.202 V9.0.0 (2009-12)

KASUMI has a number of characteristics that may be exploited in a hardware implementation and these are highlighted
here.
- The simple key schedule is easy to implement in hardware.

- The S-Boxes have been designed so that they may be implemented by a small amount of combinational logic
rather than by large look-up tables.

- The S7-Box and S9-Box operations in the FI function may be carried out in parallel (see alternative presentation
in figure 5).

- The Flj; and FI;, operations may be carried out in parallel (see alternative presentation in figure 6).

16 32
A o 17

SJY —D D
—p Fliz Fli, |€—

q —»

"

D€—

Fig.5: FI Function Fig.6: FO Function

N
N

3GPP

Release 9 20

3GPP TS 35.202 V9.0.0 (2009-12)

Annex 2 (informative):
Simulation Program Listing

Header file

typedef unsigned char u8;
typedef unsigned short ul6;
typedef unsigned long u32;

void KeySchedule(u8 *key);
void Kasumi(u8 *data);

C Code

N
*

3GPP Confidentiality and Integrity algorithms.

Version 1.1 08 May 2000

Fook ok % b ok X X ok % X % X

#include "Kasumi.h"

A sample implementation of KASUMI, the core algorithm for the

This has been coded for clarity, not necessarily for efficiency.

This will compile and run correctly on both Intel (little endian)
and Sparc (big endian) machines. (Compilers used supported 32-bit

ints).

[16 bit rotate left - - ——— - */

#define ROL16(a,b) (ul16)((a<<b)](a>>(16-b)))

[*———— unions: used to remove "endian" IsSsues ---————————————————————— */

typedef union {
u32 b32;
ulé bl6[2];
u8 b8[4];
} DWORD;

typedef union {
ul6é bl6;
u8 b8[2];
} WORD;

[globals: The subkey arrays -----—-——————————— */

static ul6 KLil[8], KLi2[8];
static ul6 KOil[8], KOi2[8]. KOi3[8];
static ul6 KIil[8], K1i2[8]. KIi3[8]:

* FIQO

* The FlI function (fig 3). It includes the S7 and S9 tables.

* Transforms a 16-bit value.

static ul6é FI(ul6é in, ul6é subkey)
{

ulé nine, seven;
static ul6é S7[] = {

54, 50, 62, 56, 22, 34, 94, 96, 38, 6, 63, 93, 2, 18,123, 33,

55,113, 39,114, 21, 67, 65, 12, 47, 73, 46, 27, 25,111,124, 81,

53, 9,121, 79, 52, 60, 58, 48,101,127, 40,120,104, 70, 71, 43,
20,122, 72, 61, 23,109, 13,100, 77, 1, 16, 7, 82, 10,105, 98,

3GPP

Release 9 21 3GPP TS 35.202 V9.0.0 (2009-12)

117,116, 76, 11, 89,106, 0,125,118, 99, 86, 69, 30, 57,126, 87,
112, 51, 17, 5, 95, 14, 90, 84, 91, 8, 35,103, 32, 97, 28, 66,
102, 31, 26, 45, 75, 4, 85, 92, 37, 74, 80, 49, 68, 29,115, 44,
64,107,108, 24,110, 83, 36, 78, 42, 19, 15, 41, 88,119, 59, 3};
static ul6 S9[] = {
167,239,161,379,391,334, 9,338, 38,226, 48,358,452,385, 90,397,
183,253,147,331,415,340, 51,362,306,500,262, 82,216,159,356,177,
175,241,489, 37,206, 17, 0,333, 44,254,378, 58,143,220, 81,400,
95, 3,315,245, 54,235,218,405,472,264,172,494,371,290,399, 76,
165,197,395,121,257,480,423,212,240, 28,462,176,406,507,288,223,
501,407,249,265, 89,186,221,428,164, 74,440,196,458,421,350,163,
232,158,134,354, 13,250,491,142,191, 69,193,425,152,227,366,135,
344,300,276,242,437,320,113,278, 11,243, 87,317, 36, 93,496, 27,
487,446,482, 41, 68,156,457,131,326,403,339, 20, 39,115,442,124,
475,384,508, 53,112,170,479,151,126,169, 73,268,279,321,168,364,
363,292, 46,499,393,327,324, 24,456,267,157,460,488,426,309,229,
439,506,208,271,349,401,434,236, 16,209,359, 52, 56,120,199,277,
465,416,252,287,246, 6, 83,305,420,345,153,502, 65, 61,244,282,
173,222,418, 67,386,368,261,101,476,291,195,430, 49, 79,166,330,
280,383,373,128,382,408,155,495,367,388,274,107,459,417, 62,454,
132,225,203,316,234, 14,301, 91,503,286,424,211,347,307,140,374,
35,103,125,427, 19,214,453,146,498,314,444,230,256,329,198,285,
50,116, 78,410, 10,205,510,171,231, 45,139,467, 29, 86,505, 32,
72, 26,342,150,313,490,431,238,411,325,149,473, 40,119,174,355,
185,233,389, 71,448,273,372, 55,110,178,322, 12,469,392,369,190,
1,109,375,137,181, 88, 75,308,260,484, 98,272,370,275,412,111,
336,318, 4,504,492,259,304, 77,337,435, 21,357,303,332,483, 18,
47, 85, 25,497,474,289,100,269,296,478,270,106, 31,104,433, 84,
414,486,394, 96, 99,154,511,148,413,361,409,255,162,215,302,201,
266,351,343,144,441,365,108,298,251, 34,182,509,138,210,335,133,
311,352,328,141,396,346,123,319,450,281,429,228,443,481, 92,404,
485,422 ,248,297, 23,213,130,466, 22,217,283, 70,294,360,419,127,
312,377, 7,468,194, 2,117,295,463,258,224,447,247,187, 80,398,
284,353,105,390,299,471,470,184, 57,200,348, 63,204,188, 33,451,
97, 30,310,219, 94,160,129,493, 64,179,263,102,189,207,114,402,
438,477,387,122,192, 42,381, 5,145,118,180,449,293,323,136,380,
43, 66, 60,455,341,445,202,432, 8,237, 15,376,436,464, 59,461};

/* The sixteen bit input is split into two unequal halves, *

* nine bits and seven bits - as is the subkey */
nine = (ul6)(in>>7);
seven = (ul6)(in&Ox7F);

/* Now run the various operations */

nine = (ul6)(S9[nine] ~ seven);

seven = (ul6)(S7[seven] ™ (nine & Ox7F));
seven "= (subkey>>9);

nine "= (subkey&0x1FF);

nine = (ul6)(S9[nine] ~ seven);

seven = (ul6)(S7[seven] ™ (nine & Ox7F));

in = (ule)((seven<<9) + nine);

return(in);

/o

The FO() function.

Transforms a 32-bit value. Uses <index> to identify the
appropriate subkeys to use.

R e */
static u32 FO(u32 in, int index)

*
*
*
*

ulé left, right;

/* Split the input into two 16-bit words */

left = (u16)(in>>16);
right = (ul6) in;
/* Now apply the same basic transformation three times */

3GPP

Release 9

left ~= KOil[index];
left = FI(left, Klil[index]);
left "= right;

right ~= KOi2[index];

right = FI(right, Kli2[index]
right "= left;

left ~= KOi3[index];

left = FI(left, Kli3[index]);
left "= right;

in = (((u32)right)<<i6)+left;

return(in);

3

* FLO

* The FL() function.

* Transforms a 32-bit value.
* appropriate subkeys to use.

static u32 FL(C u32 in, int index)

ulée I, r, a, b;

/* split out the left and right
1 = (u16)(in>>16);
r = (ul6)(in);

/* do the FL() operations

a = (ul6) (1 & KLil[index]);
r A= ROL16(a,1);

b = (u16)(r | KLi2[index]);
I ~= ROL16(b,1);

22

);

Uses <index> to identify the

halves */

*/

/* put the two halves back together */

in = ((U32)1)<<16) + r;

return(in);

* Kasumi)
* the Main algorithm (fig 1).
* four times.

void Kasumi(u8 *data)

{
u32 left, right, temp;
DWORD *d;
int n;

Apply the same pair of operations
Transforms the 64-bit input.

3GPP TS 35.202 V9.0.0 (2009-12)

/* Start by getting the data into two 32-bit words (endian corect) */

d = (DWORD*)data;

left = (((u32)d[0]-b8[0])<<24)+
+(d[0]-b8[2]<<8)+(d[0]-b8[3]);

right = (((u32)d[1].b8[0])<<24)+
+(d[1]-b8[2]<<8)+(d[1]-b8[3]);

n = 0;

do{ temp = FL(left, n);
temp = FO(temp, n++);
right ~= temp;

temp = FO(right, n);
temp = FL(temp, n++);
left "= temp;

Jwhile(n<=7);

(((u32)d[0].b8[1])<<16)
(((u32)d[1].b8[1])<<16)

/* return the correct endian result */

d[0].b8[0] =
d[0]-b8[1]

u8) (left>>24) ;
u8) (left>>16);

d[1]-b8[0]
d[1]-b8[1]

3GPP

(u8) (right>>24);
(u8) (right>>16);

Release 9 23 3GPP TS 35.202 V9.0.0 (2009-12)

d[0]-b8[2]
d[0]-b8[3]

(us) (left>>8); d[1]-b8[2] = (u8)(right>>8);
us)(left); d[1]-b8[3] = (u8)(right);

* KeySchedule()
* Build the key schedule. Most "key' operations use 16-bit

* subkeys so we build ul6-sized arrays that are "endian" correct.

K e e e e e e e e e */
void KeySchedule(u8 *k)

{

static ul6 C[] = {
0x0123,0x4567,0x89AB,0xCDEF, OxFEDC,0xBA98,0x7654,0x3210 };
ulé key[8], Kprime[8];
WORD *k16;
int n;

/* Start by ensuring the subkeys are endian correct on a 16-bit basis */
k16 = (WORD *)k;
for(n=0; n<8; ++n)
key[n] = (u16)((k16[n].b8[0]<<8) + (k16[n]-b8[1])):;
/* Now build the K"[] keys */

for(n=0; n<8; ++n)
Kprime[n] = (u16)(key[n] ~ C[n]);

/* Finally construct the various sub keys */

for(n=0; n<8; ++n)

{
KLil[n] = ROL16(key[n].,1);
KLi2[n] = Kprime[(n+2)&0x7];
KOil[n] = ROL16(key[(n+1)&0x7],5);
KOi2[n] = ROL16(key[(n+5)&0x7],8);
KOi3[n] = ROL16(key[(n+6)&0x7],13);
KIil[n] = Kprime[(n+4)&0x7];
KIi2[n] = Kprime[(n+3)&0x7];
KIi3[n] = Kprime[(n+7)&0x7];
}
}
/o
* end of kasumi c
R e */

3GPP

Release 9 24 3GPP TS 35.202 V9.0.0 (2009-12)

Annex 3 (informative):
Change history

Change history
Date TSG # TSG Doc. |CR [Rev |Subject/Comment Old New
12-1999 |- - - - ETSI SAGE Publication (restricted) - SAGE
v1.0
05-2000 |- - - - ETSI SAGE update: Small change to sample code (portability SAGE |SAGE
issue) vi.0 |[vl1.1
09-2000 |SA_07 Approved by TSG SA and placed under change control SAGE |3.1.0
vl.1l
07-2001 |- - - - Word version received: Re-formatted into 3GPP TS format (MCC) (3.1.0 |3.1.1
No technical change from version 3.1.0.
08-2001 |- Addition of Mitsubishi IPR information in Foreword and correction of [3.1.1 |3.1.2
reference titles. No technical change from version 3.1.0.
08-2001 |- - - - Release 4 version created. 3.1.2 [4.0.0
06-2002 |- - - - Release 5 version created. 4.0.0 [5.0.0
12-2004 [SP-26 - - - Release 6 version created. 5.0.0 [6.0.0
2005-09 [SP-29 SP-050564 [0001 |- Kasumi roundfunction, correction of formula 6.0.0 |6.1.0
06-2007 |SP-36 - - - Release 7 version created. 6.1.0 |7.0.0
12-2008 [SP-32 - - - Release 8 version created. 7.0.0 |8.0.0
2009-12 |- - - - Rel-9 version created 8.0.0 [9.0.0

3GPP

